

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 190-194 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311190194 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 190

FPGA Implementation of an Improved

Watchdog Timer for Safety Critical

Applications

Dr. ManjuDevi1, Prakruthi P2

1
Proffesor, Dept of ECE, The Oxford College of Engineering, Bangalore, Karnataka, India

2
PG student, Dept of ECE, The Oxford College of Engineering, Bangalore, Karnataka, India

Submitted: 01-11-2021 Revised: 06-11-2021 Accepted: 09-11-2021

ABSTRACT - Embedded systems are used for

the functions of independent systems or as large

part of the systems. It is used for the automatic

handle and recover from the time related failures.

The systems commonly use external watchdog for

functionality. They use it to adjust the time related

failures. They will have only limited features. In

this paper we show the importance of an improved

timer in safety applications. Many fault detection

systems are added on to watchdog timer which

adds on to its robustness. Here the proposed system

is implemented in space launch vehicle. allows the

design to be easily adaptable to different

applications, while reducing the overall system

cost.This design can also be used in ATM and can

be verified.

I. INTRODUCTION
Watchdog timers are used to detect and

overcome from computer malfunctions. In normal

conditions the watchdog timer resets from timing

out. But when there is hardware faults or any error

in program it does not resets automatically and

shows as time out or timer will elapse. The memory

stored till then will also be lost. Humans also takes

time to resolve this problem in embedded systems.

So the watchdog timer should automatically resolve

the problems and shouldn’t wait for the instruction

of humans or CPU. In cases like space probes

humans cannot access the faults, so watchdog

should detect and corrected the faults on its own.

The system should be designed in such a way that it

should word without the help of CPU. Such

watchdog timers are also used in system which runs

untrusted codes.

1.1 EXISTING WATCHDOG TIMER:

In this system timer doesn't have

windowed watchdog. Due to this the fault cannot

be checked clearly. This system totally depends on

the CPU, where it waits for the instruction of the

CPU. When there is fault in the process it doesn't

correct it automatically, it will wait for the CPU to

trigger the time. When it gives the information of

fault then it resets the whole process and time gets

triggered. This is very slow process and the

previously stored data will be lost and the system

starts the new process. This is the main

disadvantage of this system. It is clock dependent.

This disadvantages is rectified in the proposed

system.

Fig 1. Existing Watchdog Timer

DISADVANTAGES OF EXSTING SYSTEM

 Existing system doesn’t have window, so this

does not detect fault immediately. It waits till

the whole process is complete.

 This method is very slow.in process.

 Data is lost in this process and cannot be

retrieved.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 190-194 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311190194 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 191

II. PROPOSED SYSTEM:
An embedded system should rectify all the

faults in the system. This proposed system is the

best example of this. The watchdog timer used in

this will detect the faults on its own and overcome

it. It uses clock to trigger the output and the

previously stored data will not be post. If a fail flag

occurs the way watchdog will detect it and correct

the fault. It doesn't wait for the instruction of CPU.

It works independently on the processor.

The watchdog is implemented using FPGA.

Watchdog will have its own clock which works

independently in the system. It will have different

windows for each and every process. The

information is stored in the timer. When the

process starts to execute then each block will check

with its respective parameters. If there is any fault

detected it will automatically corrects the issue and

clock will be used for every block so that no

previously stored data is lost. This uses frame

window and service window. Where the inputs to

this is given from configuration registers. The data

will be stored in the registers. Every value will be

having its own register so that it doesn't get flipped

with other values. The output will be given in reset

out and watchdog fail. It will be having its own

value to show whether there is any fault or the

system is working in the proper position. Her the

frameworks run excessively quick and mode rate

will be accurate according to the acknowledgement

given to the system.

ADVANTAGE

 A standard watch dog clock can get issues in

the framework, for example, draping due to

unlimited circles in code execution. In any

case, the principle inconvenience of this watch

dog is that if the framework enters a flaw state

in which it persistently resets the clock, the

mistake state will never be distinguished. As

such, a standard watch dog clock can

distinguish moderate shortcomings, yet can't

recognize quick blames which happen inside

the watch dog clock period.

 In this process the faults can be detected

immediately as it has window.

 Processing is fast than the existing system.

2.1 WATCHDOG TIMER IN FPGA:

The watchdog timer is implemented in

fault injection block. This will have random fault

generator, a program counter, configuration

registers and windowed clock. The input will be

given to the system by data bus and read and write

signals to the comparator. The program counter

takes the input and values are stored in the

registers. Every value will be given different

registers so that it does not get overlapped. Then

the inputs will be given for frame window and

service window. The system is timed by the system

clock input, it will not be having processor clock. It

depends on the window lengths and hard core in

the structure. The vales will be chosen by service

length and frame length window. The inputs will be

given by 0xAAAA and 0x5555. The timing is set to

10us. For every 10us the values will be stored and

the faults will be checked. The window utilizes the

system clock which is slower than the service

window. A watch dog bomb will happen when the

product benefits the guard dog outside the

administration window, as appeared in Fig. 4. It

tends to be seen that the invalid administration

activity in a split second ends the edge window and

declares the WDFAIL signal. A good result of this

component is that two progressive administration

tasks will likewise prompt a guard dog fall flat.

Here, the main administration activity will quickly

close the administration window and the following

one will perpetually happen outside the window.

This ends up identical to adjusting the watch dog

outside the administration window and prompts a

watch dog disappointment.

The slower check is required to decrease

the quantity of comparators which is required

among the FPGA. Administration window will be

having balanced up/down counter with the system

clock. The clock will reset the inputs when any

faults is occurred. For every 10us it checks the

faults and stores the value. The windowed

architecture is used so that for every block in the

system is checked separately and stored. Is any

fault is detected then it will correct automatically

and then further it goes to the next block.

Fig 2. Functional Block diagram of proposed

Watchdog timer

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 190-194 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311190194 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 192

2.2 PROPOSED BLOCK DIAGRAM WITH

FAULT INJECTION BLOCK

Fig 3. Fault Injection block

III. IMPLEMENTATION OF

WATCHDOG IN SPACE LAUNCH

VEHICLE
The existing system of the space launch

vehicle has same block to check the temperature,

pressure and heat explosion, when fault is detected

the system will not know where exactly is the fault.

It shows as the system fault. This is corrected in the

proposed system. Here the system will have

separate blocks for each parameters and checks. It

does not depend on CPU. It will correct the fault

automatically by the processor. The values be

loaded in the processor so that their won’t be any

interaction in between it does automatically. Then

the output is shown in the rstout and wdfail.

3.1 EXISTING SYSTEM

Fig 4. Existing Space Launch Vehicle

3.2 PROPOSED SYSTEM

Fig 5. Functional block diagram

OUTPUT

This is the Schematic diagram of the

watch dog timer when it is installed in the space

shuttle which will be having different parameters

detectors which will check each and every cycle of

the system and save the previous loaded file

without any loss of the information. This will be

having the input of service window, frame window

and system clock.

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 190-194 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311190194 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 193

FAULT INJECTION BLOCK WATCHDOG

TIMER

If there is any fault in the system then the wdfail

=1.

PROPOSED SYSTEM OUTPUT

When restart is high, program counter before

reaching the comparative value, thus restart = 1. It

indicates that application is in good condition

IV. CONCLUSION
This project shows the totally improved

watchdog timer which is windowed and it is

implemented in FPGA. From the results we know

that the timing taken is much less than the existing

system. Watchdog timer will run independently

throughout the process. This shows that the faults

will be shown earlier before the system gets the

output. This has sufficient time for saving the

values which is given by the system. The previous

values will be stored and doesn’t get lost. It will be

having separate values for each parameters. At

once many faults can be detected and can be

corrected. The software used is HDL. This can be

used for different FPGA with overhead.

The main advantage of the proposed

system is it uses the windowed technique where the

values will be stored and checked separately

without any interference of the processor. It also

gives some particular time for the system to store

the values in non-volatile medium. So that data will

not be lost.

The use of this system in space launch

vehicle is to check different parameters at a time in

different windows so that it can be known where

exactly the fault is and can be corrected in the same

point. By using this we save time and cost. The

system cost is less.

The use of clock in the system is major

advantage. The timing rate is very less and for

every 10us the values will be stored by the system

before it goes to reset.

ACKNOWLEDGEMENT

 I would like to thank all my teachers, Head of

department and Principal for the opportunity to do

this project based on Embedded systems.

REFERENCES
[1]. S. N. Chau, L. Alkalai, A. T. Tai, and J. B.

Burt, “Design of a fault tolerant COTS-

based bus architecture,” IEEE Transactions

on Reliability, vol. 48, no. 4, pp. 351–359,

Dec. 1999.

[2]. V. B. Prasad, “Fault tolerant digital

systems,” IEEE Potentials, vol. 8, no. 1, pp.

17–21, Feb. 1989.

[3]. J. Beningo, “A review of watchdog

architectures and their application to

Cubesats,” Apr. 2010.

[4]. A. Mahmood and E. J. McCluskey,

“Concurrent error detection using watchdog

processors - a survey,” IEEE Transactions

on Computers, vol. 37, no. 2, pp. 160–174,

Feb. 1988.

[5]. B. Straka, “Implementing a microcontroller

watchdog with a field programmable gate

array (FPGA),” Apr. 2013.

[6]. J. Ganssle, “Great watchdogs,” V-1.2, The

Ganssle Group, updated January 2004, 2004.

[7]. E. Schlaepfer, “Comparison of internal and

external watchdog timers application note,”

Maxim Integrated Products, 2008.

[8]. P. Garcia, K. Compton, M. Schulte, E. Blem,

and W. Fu, “An overview of reconfigurable

hardware in embedded systems,” EURASIP

Journalon Embedded Systems, vol. 2006, no.

1, pp. 13–13, Jan. 2006.

[9]. G. C. Giaconia, A. Di Stefano, and G.

Capponi, “FPGA-based concurrent

International Journal of Advances in Engineering and Management (IJAEM)

Volume 3, Issue 11 Nov 2021, pp: 190-194 www.ijaem.net ISSN: 2395-5252

DOI: 10.35629/5252-0311190194 Impact Factor value 7.429 | ISO 9001: 2008 Certified Journal Page 194

watchdog for real-time control systems,”

Electronics Letters, vol. 39, no. 10, pp. 769–

770, Jun. 2003.

[10]. A. M. El-Attar and G. Fahmy, “An improved

watchdog timer to enhance imaging system

reliability in the presence of soft errors,” in

Signal Processing and Information

Technology, 2007 IEEE.

[11]. Yingxu Wang and Yanan Zhang, “The

Formal Design Model of an Automatic

Teller Machine (ATM)” University of

Calgary, Canada, International Journal of

Software Science and Computational

Intelligence, 2(1), 102-131, January-March

2010.

[12]. Mike Bond, Omar Choudary, Steven J.

Murdoch, Sergei Skorobogatov, and Ross

Anderson, “Chip and Skim: cloning EMV

cards with the pre-play attack”. Computer

Laboratory, University of Cambridge, UK.

[13]. Avenet Avenue, user’s guide, Xilinx®

Spartan™-3 Development Kit.

[14]. S. N. Chau, L. Alkalai, A. T. Tai, and J. B.

Burt, “Design of a faulttolerantCOTS-based

bus architecture,” IEEE Transactions on

Reliability,vol. 48, no. 4, pp. 351–359, Dec.

1999.

[15]. V. B. Prasad, “Fault tolerant digital

systems,” IEEE Potentials, vol. 8,no. 1, pp.

17–21, Feb. 1989.

[16]. J. Beningo, “A review of watchdog

architectures and their applicationto

Cubesats,” Apr. 2010.

[17]. A. Mahmood and E. J. McCluskey,

“Concurrent error detection usingwatchdog

processors - a survey,” IEEE Transactions

on Computers,vol. 37, no. 2, pp. 160–174,

Feb. 1988.

[18]. B. Straka, “Implementing a microcontroller

watchdog with a fieldprogrammablegate

array (FPGA),” Apr. 2013.

[19]. J. Ganssle, “Great watchdogs,” V-1.2, The

Ganssle Group, updatedJanuary 2004, 2004.

[20]. E. Schlaepfer, “Comparison of internal and

external watchdog timersapplication note,”

Maxim Integrated Products, 2008.

